Project summary
Ammonia (NH3) production via the Haber–Bosch process was one of the key achievements of the 20th century, enabling quadrupling the production of agricultural products and acting as a preventive measure to stop world hunger. It is estimated that between a third to a half of the world population would suffer starvation if ammonia-based fertilisers were not available. Ammonia is also an excellent indirect hydrogen-storage material as it is more energy efficient to produce, store, and deliver hydrogen as ammonia than as compressed and/or cryogenic hydrogen. Ammonia is also seen as an eco-friendly energy source for a sustainable energy future as it can be synthesised directly from atmospheric nitrogen and does not produce CO2 during burning. However, the industrial production of ammonia is very energy intensive (2% of global energy consumption), requiring high temperature (500◦C) and pressure (in excess of 500 atmospheres), and very pure raw materials; it is also eco-destructive (creating more than 900 million tonnes of CO2 by-product per year), costly and requires considerable plant infrastructure. As such, there is an immediate need to develop alternative green and cost-effective processes for ammonia production.
Ammonia can be produced at room temperature by electrochemical synthesis. However, all of the state-of-art systems have common limitations such as slow kinetics of the transformation, expensive electrolytes, high pressure & temperature (to increase the kinetics), poor selectivity, low conversion rate and low Faradaic efficiency.
The host of this project, Particles and Catalysis Research Group (PARTCAT), is a leading (photo(electro)) catalysis research group within the School of Chemical Engineering at the University of New South Wales (UNSW). Building on this foundation, atomically thin two-dimensional (2D) materials such as graphene will be studied over this PhD project for an efficient electrochemical reduction of nitrogen to ammonia.
Supervisors:
- Prof. Rose Amal
- Dr. Ali Jalili
- Prof. Douglas MacFarlane - Monash University